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A new metric depending on three arbitrary parameters is presented by the method 
of complex coordinate transformations. It gives the gravitational field of a 
radiating rotating charged body. The metric is algebraically special of Petrov type 
1I according to classification of the Weyl tensor, with a twisting, shear-free, null 
congruence identical to that of the Kerr-Newman metric. The new metric bears 
the same relation to the Kerr-Newman metric as the Bonner-Vaidya metric does 
to the Reissner-Nordstrom metric. 

1. I N T R O D U C T I O N  

The Schwarzschild (Reissner-Nordstrom) metric and Kerr (Kerr -  
Newman) metric describing the exterior gravitational field of  a spherically 
symmetric (charged) body and a rotating (charged) body, respectively, are 
very fundamental in general relativity theory and have numerous applications 
in experimental relativity and astrophysics. However, as is well known, 
in general, celestial bodies have radiation. Hence, the gravitational fields 
surrounding spherically symmetric (charged) bodies and rotating (charged) 
bodies cannot be described by such metrics except in the approximation in 
which one neglects the energy density of the emitted radiation. Such an 
approximation may not be valid for certain astrophysical processes, in which 
case the radiation must be taken into account. Thus, much attention has 
focused on finding metrics which describe the external gravitational field of 
radiating bodies. Vaidya (1943, 1951, 1953) and Bonnet and Vaidya (1970) 
obtained a radiating metric and a radiating charged metric, respectively, which 
are nonstatic generalizations of the Schwarzschild metric and Reissner- 
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Nordstrom metric, respectively. Carmeli (1982; Carmeli and Kaye, 1977, 
1979) generalized the Kerr metric and got the metric of a radiating rotating 
body, which bears the same relation to the Kerr metric as does Vaidya's 
metric to the Schwarzschild metric. However, to the best of our knowledge, 
a nonstatic generalization of the Kerr-Newman metric has not yet been 
derived. In this paper we present and discuss the metric outside a rotating 
charged body when radiation is included. 

A generation method using "complex tricks," i.e., a complex coordinate 
transformation, was first used by Newman and Janis (1965a,b) and justified 
and further developed by several authors (Talbot, 1969; Newman, 1973; 
Schiffer et al., 1973; Jing et al., 1992). Newman (1973; Newman and Janis, 
1965a,b) pointed out that such an operation works for solutions of the form 
g ~  = ~ + HlJ~. Talbot (1969) justified such a method within the formalism 
for algebraically special fields. The same technique was used to obtain new 
solutions of the Einstein-Maxwell equations (Demianski and Newman, 1966; 
Demianski, 1972). In present paper, we will use this method to obtain a 
metric of a radiating rotating charged body. 

The plan of the paper is as follows. In Section 2, starting from the metric 
of Bonner and Vaidya (1970) for a radiating charged body, we obtain by 
means of a complex coordinate transformation a new metric which describes 
the external gravitational field of a radiating rotating charged body. In Section 
3 we study the properties of the metric. The classification of the Weyl tensor 
is then carried out using the spinor version (Pirani, 1964; Carmeli, 1974) of 
the Petrov classification. The Ricci tensor and the energy-momentum tensor 
are given. Section 4 is devoted to conclusions. Finally, for the sake of com- 
pleteness and comparison, some calculated results are given in the 
Appendices. 

2. THE METRIC OF A RADIATING ROTATING CHARGED 
B O D Y  

The Vaidya-Bonner metric of a radiating charged body is as follows 
(Bonner and Vaidya, 1970): 

1 - 2m/r + Q21r2 1 0 0 \ 
1 0 0 0 ) gr = 0 0 - r  2 0 (2.1) 

0 0 0 - r  2 sin20 

where I~ and v run from 0 to 3 denoting u, r, 0, ~o, respectively. The quantities 
m and Q are arbitrary functions of u and represent the mass and charge of 
the source, respectively. 
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In order to apply the "standard complex trick" (Newman and Janis, 
1965a,b), we first write the metric (2.l)  in the null tetrad form 

with 

(2.2) 

1[ 
l ix= ~ ,  nix= 8 ~ - ~  1 - 

1 
m ~ = -----~_ ( ~  + i sin 0 ~r (2.4) 

where r is allowed to take complex values and ? is the complex conjugate 
of r. 

Introduce the following complex coordinate transformations on vectors 
lix, nix, mix, and ~ as used in Newman and Janis (1965a,b): 

u' = u - ia cos 0, r' = r + ia cos 0 (a = const) 

0' = 0, q~' = qo (2.5) 

The corresponding transformation matrix for the 4-vector can be written as 

o / a s i n o  
a '~  = 1 - i a  sin O 

0 1 (2.6) 

0 0 

If now we restrict r' and u' to be real as in Newman and Janis (1965a,b) we 
obtain the following tetrad: 

l'ix = ~ ,  n '~ = ~- - � 8 9  - 2mrp-O + Q2p~)~ 

m ' ~ -  ~__ i a s i n O S ~ - i a s i n O g ~ + g ~ +  ~ (2 .7)  
,/2 

l( 2m lix = go, n~ = ~  1 - - - -  + g0 
r r2 ]  ix + ~ix 

r ( 8 2 + i s i n 0 8 3  ) (2.3) mix ~ x/~ 

Finding the contravariant null tetrad vectors corresponding to (2.3), and then 
complexifying them according to Newman and Janis (1965a,b), we have 
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where 

1 
9 = (2.8) 

r - ia  cos 0 

Removing the prime and applying equation (2.2), we finally arrive at 

- - a  sin20 pp (a 2 + r2)po 0 --ap_~ 
(a 2 QZ _ r 2 _ ] ,,+r2)p~ ( 2 m r  - 0 a2)p~ -Pg0 a~)p g~" 

/ 
\ - app  ap~ 0 -p~/sin20/ 

(2.9) 

whereas the covariant of the metric is given by 

I I - (2mr  - Q2)p~ 1 0 

1 0 0 

1 0 0 g~ = 

a(2mr  - Q2)O~ sin20 - a  sin20 

a(2mr  - Q2)O~ sinZ0 

-a  sin20 

p~ 0 

[ a2 + r2] 
0 sin40 ( Q 2 _  2mr)a2p-~ si-~O J 

(2.10) 

This is the new space-time metric we obtain. It is a natural nonstationary 
generalization of the Kerr-Newman metric, where the latter has the same 
form, but with constants m and Q. In metrics (2.9) and (2.10), m ( u )  and Q(u) 
are the mass and charge of the radiating rotating charged body as seen by 
an observer at infinity, respectively, and they are arbitrary functions of the 
retard time coordinate u. The total angular momentum of the body is given 
by m ( u ) a ,  where a is a constant just as in the Kerr-Newman case. 

3. THE PROPERTIES OF THE GRAVITATIONAL FIELD 

In order to investigate the gravitational field (2.10) and compare the 
results with those of the Kerr-Newman metric and the nonstationary Kerr 
metric given in Carmeli (1982) and Carmeli and Kaye (1977, 1979), we use 
another null tetrad; the contravariant components of the null tetrad for the 
metric (2. I0) are 

l r = ~- 

mr = ,f2 sin 0 
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whereas the covariants of the null tetrad are given by 

l ~ =  B ~  asin20B3~ 

= ( r 2 + a 2 + Q 2 - 2 m r - o  Bt~ 2 m r - Q  z 3)  n~ 9P " 2 ti~ + - -  + - (r2 + a2) pp 2 a sinZ0 

m ~ - i f - 2 (  ia sin 0 ~~ 9P B2 i ( r 2 + a 2 )  s i n O B ~ )  (3.2) 

The spin coefficients can now be calculated from the definitions (Carmeli, 
1982; Carmeli and Kaye, 1977, 1979) and with aid of the Christoffel symbols 
which are listed in Appendix A, we find 

I ia sin 0 p2 
w = e = (r = k = O, P = r -  i a c o s O '  ' r r -  v/~ 

cot0-0 - 2 m r -  Q2 _ (r 2 + a z) 
- 2 4 ~  ' a = ar - fS, I.L = 2 P2-0 

v - ,r r~uu _ Q p2-0, ~ /=  I~ + 2 ' 

ia sin 0 p-0 
"r = - ~ (3.3) 

In the present case we note the presence of a spin coefficient, v, that is zero 
in the case of the Kerr-Newman metric. The rest of the spin coefficients are 
identical to those of the Kerr-Newman metric with variable mass and charge. 
The presence of this spin coefficient will in turn give rise to terms in the 
other Newman-Penrose quantities which do not appear in the Kerr-Newman 
case, as will be seen below. 

The tetrad components of the trace-free Ricci tensor and Ricci scalar 
are calculated in Appendix B and are found to be 

0oo = O01 = 002 = 0, Oil = �89 

and 

o ,a in0(  m 
if2 ~uu + Q(p~)2 ~ u  

a 2 sin20 (p~)2 r 
022 = 2 [ r -ff-~u2 - Q ~ u  2 - \ du ] J 

- - r (P-0)2( r -~u- -Q~u Q) 

R = - 2 4 A  = 0 (3.4) 
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The tetrad components of the Weyl tensor are (see Appendix B) 

~ 0 =  ~t = 0 ,  ~2 = ( p +  Q2)p3~ 

[dm 4 [ dm _ ~ ) ]  t ~ 3 = - i  ~ -~-u + p~r-~u- a a s i n 0  

( [  d2m d2Q (dQ~2]p3-O ( d m  -~uQ) } 
~4 = [r_~u2 _ Q  du___.T_\du]_]_~._ + r_~u_ Q p4~ a2sin20 

(3.5) 

We note the presence of qbl2, ~22, %, and d~4 in (3.4) and (3.5), which are 
zero for the Kerr-Newman metric. 

Since +0 = t~t = 0 and 3~2t~4 ~ ~2, we can show that the metric is 
algebraically special of Petrov type II with repeated principal null vector P'. 
This is different from the Kerr-Newman metric, which is Petrov type D with 
two repeated principal null vectors l" and n ~. 

The three optical scalars (shear, twist, and expansion) are 

cr = [ � 8 9  - 0 2]'n = 0 

to = [�89 tn = --ap~ cos 0 

O = - - 1  p. ~-l;i, --rp~ (3.6) 

Hence the metric contains a shear-free, twisting, and diverging null congru- 
ence identical to that of the Kerr-Newman metric. 

We now calculate the components of the Ricci tensor by expanding it 
in terms of tetrad components (3.4). Since the Ricci scalar is zero, we have 
R,.,, = Rm,, zO.mz,, ", which is equal to the energy-momentum tensor T~. Hence, 
the energy-momentum tensor can be expressed as 

T~ = 4Q2(pp-)2[l(~n~) + m ( ~ ) ]  

f 2 F d2m od2Q (dQ~21 
- ~a 2 sin20 (p~) / r  - 

t t ' ~  du ~ \ du ] I 

+ 2rp~2( dm dQl~lol,, 4a sin 0 dm 
r -~u - a --~uJJ ~ du p-Olm(l(o-~,,)p) 

8Q(p~)2a sin 0 dQ 
- v /2  d---u lm(l(~.-~,,)) ( 3 . 7 )  

Using equations (3.2) and (3.7), we can write directly the components of the 
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Ricci tensor and energy-momentum tensor. The energy-momentum tensor 
T") can be divided into three parts; the first one, _ ~  = 4Q2(p-O)2[l(~n~) + rn(~) ] ,  

is the energy-momentum tensor of the electromagnetic field, which is equal 
to that of the Kerr-Newman metric; the second part 

T~2~ = _2rp2~2( r--~u Q dO)l~l~du / 

describes a Bonner-Vaidya-type radiative field; and the third one 

{ d2m d2Q (dQ~2]~l~l~ 
7~d3~) = - a2 sin20 (PP) Lr ~ - Q ~ - \-~u) J ) 

4a sin 0 dm 8Q(p~)2a sin 0 dQ lm(l(ff~v)) 
du p-~Im(l~-~,p)- ~ d---u 

is a residual contribution. Asymptotically, as air tends to zero, one sees that 
the residual parts are of the order r -3 and r-4. Hence, due to the presence 
of the residual term in the energy-momentum tensor, only asymptotically 
does the nonstationary generalization of the Kerr-Newman metric behave 
like the Bonner-Vaidya metric. 

4. CONCLUSION 

In view of the above discussion, a new metric depending on three 
arbitrary parameters has been presented. The metric describes the gravitational 
field of a radiating rotating charged body. It is algebraically special of Petrov 
type II according to the classification of the Weyl tensor, with a twisting, 
shear-free, null congruence identical to that of the Kerr-Newman metric. 

APPENDIX A. CHRISTOFFEL SYMBOLS FOR THE METRIC 
OF A RADIATING ROTATING CHARGED 
BODY 

The nonzero Christoffel symbols of the second kind for the gravitational 
field of the radiating rotating charged body described by equations (2.9) and 
(2.10) are given by 

F~ = g ~ F ~  

am dQ~a 2 F ~  - ~ r -  Q--dT) sin20pZ~Z- (mr 2_ Q2r)pZ~2+rnaZp2~2 

- (2mr - Q2)ra 2 sin20 p3~3 
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Fo~ = - ( 2 m r  - QZ)a2 sin 0 cos 0 pz~2 

Fo03 = (2mr  2 _ Q2r)a3 sin40 p3~3 + (2mr  - QZ)ar  sin20 O2p 2 - m a  3 sin40 p2~2 

+ ~ -  r - Q a 3 sin40 p2~2 -- m a  sin20 pp  

F ~  z s i n O c o s O p ~  

F~ = ra sin20 p~ 

F02 = r (a  2 + rZ)pp 

F~ = ( 2 m r  - Q2)a3 sin30 cos 0 p2~Z 

F03 = _ ( m r  4 _ Q2r3 _ Q2ra2)aZ sin40 p3~3 

_ m r 2 a  4 sin60 p3~3 + ma 6 sin40 cos20 p3~3 

\ - ~ -  r - Q a 4 sin60 la2~ 2 + ra 2 sin40 p~ + r sin'-O 

F~o = (2mr  2 - Q2r)a2 sin20 p3~3 _ ( 2 m r  - Q2)2rp3p3 + ~ t  r - Q a z 

• sin20 p2~2 + ( 2 m r  - Q2)mp2~z + (2mr  2 - QZr)p'-p2 - ma  z sin20 p2~2 

d m  d Q  - 
- ( ' - ~ r - - Q - ' ~ ) p p - m p - p  

r~, = (2mr- Q2)~p2~2 _ ~p~ 

I'~3 = ( 2 m r  -- Q2)2ra sin20 p3~3 __ ( 2 m r  -- Q2)ra3 sin40 p3~3 

- ( 2 m r  - QZ)ma sin20 p2~2 _ ( 2 m r  - QZ)ra sin20 p2~2 + ma  3 sin40 p2~2 

- ~ - Q a 3 sin40 + m a  sin20 pp  

FI2 = - a  2 sin 0 cos 0 p~ 

F]3 = - ( 2 m r  - Q2)ra sin20 p2~2 + m a  sin20 p~  - ra sin20 p~ 

F~2 = ( 2 m r  - Q2)rp~ - ra 2 sin20 p~ - r 

F~3 = - ( 2 m r  - QZ)Zra2 sin40 p3~3 + ( 2 m r  - Q2)ra4 sin60 p3~3 + ~ r - Q ~ 

x a 4 sin60 p2~2 + ( 2 m r  - Q2)ra2 sin40 p2~2 + (2mr  - Q2)ma 2 sin40 p2~Z 

_ m a  4 s i n 6 0 p 2 ~ 2 +  ~ r -  Q a - ' s i n 4 0 p ~ - m a  2 s i n 4 0 p ~ + ( 2 m r -  QZ) 
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r~o= 
['g3 = 

rb_ = 
F~,~ = 

FL, = 

r~o= 

Fo~2 = 

F ~  = 

F~2 = 

r h  = 
r]2 = 
r,% = 

• r sin20 p p  - r a  2 sin40 pp  - r sin20 

- ( 2 m r  - Q2)a2 sin 0 cos  0 p3~3 

( 2 m r  - Q 2 ) r 2 a  s in  0 cos  0 p3~3 + ( 2 m r  - QE)a3 sin 0 cos  0 p3~3 

rp~  

- a  sin 0 cos  0 p~  

- a  2 sin 0 cos  0 p~  

- ( 2 m r  - Q2)a4  sin50 cos  0 p3~-3 _ 2 ( 2 m r  - Q2)a2  sin30 cos  0 p~p-~ 

--  ( r  2 -{- a 2) sin 0 cos  0 p~  

- r - Q ap2~ 2 + r e a p ' p -  - ( 2 m r  - Q Z ) r a p 3 ~  

- ( 2 m r  - Q2)a cos  0 cosec  0 p2~2 

( 2 m r  - Q 2 ) r a  2 sinZO p ~ 3  - ma  2 sinZO p2~2 

+ ~ r - Q a 2 sin20 p2~,_ 

a cos  0 cosec  0 p~  

rp~  

rap-p 
( 2 m r  - Q2)a2 s in  0 cos  0 p2~2 -F cos  0 cosec  0 

+ m a  ~ sin40 p2~2 + r a  sin20 p~  ( A l )  

APPENDIX B. TETRAD COMPONENTS OF THE RICCI 
TENSOR, RICCI SCALAR, AND WEYL 
TENSOR 

The tetrad components of the Ricci tensor 0oo, O0~, 002, Oit, Oi2, and 
0 2 2  are calculated using the Newman-Penrose equations: 

Dp - gK = (p  2 + O'~) -Jr- (r + ~)p -- ~T -- K(30t + g -- "n') + r 

D o t - g e  = ( p  + e -  2e)ct + [ 3 ~ - g e -  K X - - K y  + ( e +  p)lr +~Plo 

D~. - g ~  = (pX + ~/~) + ~r 2 + (c~ - g)~r - v~ - (3e - e)X + ~2o 

- vK + ( ~ p  - ~ )  + ~ + [3~ - 2~[3 + (O - P)'t 

+ (Ix - ~ )e  + 2 ~  

a-~ - A[3 = (7 - ~ - ~)~/ + p.~ -- ~v - r - (-/ - ~ - ~)13 + a ~  + 4),2 

5v - Ap. = (p)  + ~ )  + ('/ + ~ ) ~  - ~ r  + (7 - 3[3 - ~)~, + ~22 ( B I )  
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The Ricci scalar R = - 2 4 A  can be calculated from 

DIx - Brr + 8ot - B[3 = (~ + p)l �9 + (p - ~)'y - (~ - 13)'rr 

- (E~ + ~ )  - vK + a ~  + 13~ + ~ 

I n  

~2, q'3, 

D o ' -  

D I 3 -  

A p -  

A o t -  

A K -  

- 2ol3 + @,, + 3A (B2) 

order to calculate the tetrad components of  the Weyl tensor %,  ~,, 
and ~4, we can use the following Newman-Penrose  equations: 

a,<= (p +~)cr + (3~-~)o-- K('r--~+~+313) +~0 

a~ = (o( + ,,r)o- + (~ - ~)13 - (o, + "y)K - (~  - ~ ) ~  + qJ, 

~'r= -(p~+o'X) + (~ -a -~ ) ' r  + ('y+~)p + vK-th2-2A 

~"~ : ( p  "}- E)I) - -  (T Jr- 13))k "1- ( ~  - -  ~ )Ot  -Jr ( ~  - -  T ) ~  - -  I]13 

~v = -(1~ + ~ ) X -  ( 3 " y - ~ ) h  + ( 3 e t + ~ + ' r r - u  ~4 (B3) 

From the definitions of the intrinsic derivatives and the expressions for 
the null tetrad (3.1) we find that 

D = O/Or 

A = p ~ [ ( r  2 + aE)(O/Ou) --/(rE + a 2 - 2mr + Q2)(O/Or) + a(O/Oq~)] 

= -(-~/x/~)[ia sin 0 (O/Ou) + (0/00) + i cosec 0 (0/Oq0)] (B4) 

Substituting the explicit expressions for the intrinsic derivatives and the spin 
coefficients as given in (B4) and (3.3), respectively, into (B 1)-(B3), we find 

@oo=@o,=@o2=0 

0 2 
r  = T (p~)2 

* ,2 - -  iasinO(p2"pdm 
,/~ \ 2 du 

([D22 = 

A = 0  

% = ~, = 0 

+ Q(pp-)~ 

2 [r-~-s - Q-~Tu2- \ d u J ]  ~ B5) 

(B6) 
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[dm ( dm aO_~] a 
~3 = - i ~  2 -~-u + 4 p  r - - ~ u - a - ~ u j j  s in0  

d2m d2Q (dQ'~21 p + r_~_ u Q p4~ a2sin20 
~ ,  = r-~-fu2 - a --~-fu2 - \ au ] J (B7) 
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